首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   92篇
  2021年   7篇
  2020年   7篇
  2019年   12篇
  2018年   13篇
  2017年   10篇
  2016年   22篇
  2015年   25篇
  2014年   29篇
  2013年   33篇
  2012年   53篇
  2011年   32篇
  2010年   30篇
  2009年   27篇
  2008年   40篇
  2007年   30篇
  2006年   38篇
  2005年   20篇
  2004年   41篇
  2003年   25篇
  2002年   21篇
  2001年   38篇
  2000年   22篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1994年   4篇
  1993年   8篇
  1992年   11篇
  1991年   12篇
  1990年   18篇
  1989年   14篇
  1988年   16篇
  1987年   14篇
  1986年   13篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1979年   9篇
  1978年   4篇
  1977年   9篇
  1976年   6篇
  1974年   6篇
  1970年   6篇
  1969年   4篇
  1968年   4篇
  1967年   5篇
  1966年   4篇
排序方式: 共有834条查询结果,搜索用时 343 毫秒
91.
Sickle cell disease (SCD) is characterized by reperfusion injury and chronic oxidative stress. Oxidative stress and hemolysis in SCD result in inactivation of nitric oxide (NO) and depleted arginine levels. We hypothesized that augmenting NO production by arginine supplementation will reduce oxidative stress in SCD. To this end, we measured the effect of arginine (5% in mouse chow) on NO metabolites (NOx), lipid peroxidation (LPO), and selected antioxidants in transgenic sickle mouse models. Untreated transgenic sickle (NY1DD) mice (expressing  75% βS-globin of all β-globins; mild pathology) and knockout sickle (BERK) mice (expressing exclusively hemoglobin S; severe pathology) showed reduced NOx levels and significant increases in the liver LPO compared with C57BL mice, with BERK mice showing maximal LPO increase in accordance with the disease severity. This was accompanied by reduced activity of antioxidants (glutathione, total superoxide dismutase, catalase, and glutathione peroxidase). However, GSH levels in BERK were higher than in NY1DD mice, indicating a protective response to greater oxidative stress. Importantly, dietary arginine significantly increased NOx levels, reduced LPO, and increased antioxidants in both sickle mouse models. In contrast, nitro-L-arginine methylester, a potent nonselective NOS inhibitor, worsened the oxidative stress in NY1DD mice. Thus, the attenuating effect of arginine on oxidative stress in SCD mice suggests its potential application in the management of this disease.  相似文献   
92.
The signature of calcium-dependent protein kinases (CDPKs) is a C-terminal calmodulin-like domain (CaMLD) with four consensus calcium-binding sites. A junction domain (JD) joins the kinase with CaMLD and interacts with them through its autoinhibitory and CaMLD binding subdomains, respectively. We noted several CDPKs additionally have a bipartite nuclear localization signal (NLS) sequence as a subdomain in their JD, and this feature is obligatorily coupled with the absence of consensus calcium-binding sites in their respective CaMLDs. These predicted features are substantiated by undertaking investigations on a CDPK (gi:67479988) isolated from cultured groundnut (Arachis hypogea) cells. This kinase can bind 3.1 mol of Ca(2+) under saturating conditions with a considerably high K(d) of 392 mum as compared with its canonical counterparts. CD spectroscopic analysis, however, indicates the intramolecular structural changes accompanied with calcium binding to be similar to canonical CDPKs. Attesting to the presence of NLS in the JD, the endogenous kinase is localized in the nucleus of osmotically stressed Arachis cells, and in vitro binding assays indicate the NLS in the JD to interact with nuclear transport factors of the importin family. Homology modeling also indicates the feasibility of interaction of importins with the NLS present in the JD of such CDPKs in their activated form. The possible significance of obligatory coupling between the presence of NLS in the junction domain and atypical calcium binding properties of these CDPKs is discussed in the light of the known mechanisms of activation of these kinases.  相似文献   
93.
In bacteria, biogenesis of cell wall at the division site requires penicillin-binding protein 3 (PBP3) (or Ftsl). Using pull-down, bacterial two-hybrid, and peptide-based interaction assays, we provide evidence that FtsW of Mycobacterium tuberculosis (FtsWMTB) interacts with PBP3 through two extracytoplasmic loops. Pro306 in the larger loop and Pro386 in the smaller loop of FtsW are crucial for these interactions. Fluorescence microscopy shows that conditional silencing of ftsW in Mycobacterium smegmatis prevents cell septation and positioning of PBP3 at mid-cell. Pull-down assays and conditional depletion of FtsW in M. smegmatis provide evidence that FtsZ, FtsW and PBP3 of mycobacteria are capable of forming a ternary complex, with FtsW acting as a bridging molecule. Bacterial three-hybrid analysis suggests that in M. tuberculosis, the interaction (unique to mycobacteria) of FtsZ with the cytosolic C-tail of FtsW strengthens the interaction of FtsW with PBP3. ftsW of M. smegmatis could be replaced by ftsW of M. tuberculosis. FtsWMTB could support formation of the FtsZ-FtsW-PBP3 ternary complex in M. smegmatis. Our findings raise the possibility that in the genus Mycobacterium binding of FtsZ to the C-tail of FtsW may modulate its interactions with PBP3, thereby potentially regulating septal peptidoglycan biogenesis.  相似文献   
94.
95.
The oxygenase domain of the inducible nitric oxide synthase, Δ65 iNOSox is a dimer that binds heme, L-Arginine (L-Arg), and tetrahydrobiopterin (H4B) and is the site for NO synthesis. The role of H4B in iNOS structure-function is complex and its exact structural role is presently unknown. The present paper provides a simple mechanistic account of interaction of the cofactor tetrahydrobiopterin (H4B) with the bacterially expressed Δ65 iNOSox protein. Transverse urea gradient gel electrophoresis studies indicated the presence of different conformers in the cofactor-incubated and cofactor-free Δ65 iNOSox protein. Dynamic Light Scattering (DLS) studies of cofactor-incubated and cofactor-free Δ65 iNOSox protein also showed two distinct populations of two different diameter ranges. Cofactor tetrahydrobiopterin (H4B) shifted one population, with higher diameter, to the lower diameter ranges indicating conformational changes. The additional role played by the cofactor is to elevate the heme retaining capacity even in presence of denaturing stress. Together, these findings confirm that the H4B is essential in modulating the iNOS heme environment and the protein environment in the dimeric iNOS oxygenase domain. (Mol Cell Boichem xxx: 1–10, 2005) Supported by Calcutta University Research Grants.  相似文献   
96.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   
97.
The folding behavior of cytochrome C (Cyt-C) conjugated with CdS nanorods (CdSnr) is amenable to monitoring by bright field microscopy, the porosity and percolating behavior of such protein conjugated nanoclusters depending on the folding history prior to the conjugation. The method has been used to predict the thermal melting behavior as well as guanidine hydrochloride induced unfolding of Cyt-C. Dynamic light scattering studies indicate that the size distribution of the nanoforms widens in presence of the protein. Furthermore, there is emergence of clusters with higher conductivity and altered zeta potential. Increase of second virial coefficient of CdS nanoforms in the presence of Cyt-C (obtained from static light scattering experiments) implies presence of protein coat over the hydrophobic nanosurface. The results are supported by morphological changes observed through scanning electron microscopy (SEM). Accordingly, the X-ray diffraction pattern shows a change of crystallographic orientations of CdSnr in presence of Cyt-C.  相似文献   
98.
Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I.  相似文献   
99.
A small inhibitor RNA (IRNA) isolated from yeast has previously been shown to efficiently block poliovirus and hepatitis C virus IRES-mediated translation by sequestering mammalian RNA-binding (transacting) factors that play important roles in cap-independent translation. Here we have investigated the IRNA-binding proteins that might be involved in cap-independent translation in the yeast Saccharomyces cerevisiae. We have identified Zuotin, a DnaJ chaperone protein similar to mammalian HSP-40 chaperone, which interacts strongly with IRNA. Using ZUO1-deleted S. cerevisiae, we demonstrate a preferential requirement of Zuo1p for cap-independent translation mediated by the 5' untranslated region of the yeast TFIID mRNA. Further studies using zuo1delta S. cerevisiae complemented with various Zuo1p mutants indicate that the DnaJ domain of Zuo1p, known to influence its interaction with HSP-70, significantly affects cap-independent translation. These results demonstrate for the first time a role for an established chaperone protein in cap-independent translation of a cellular mRNA.  相似文献   
100.
Cibacron blue is a potent inhibitor of 3-HBA-6-hydroxylase at a concentration < 1 microM. Kinetic analyses revealed that at a concentration below 0.5 microM the dye behaves as an uncompetitive inhibitor with respect to 3-HBA and competes with NADH for the same site on the enzyme. The alteration of the near-UV CD spectrum and quenching of the emission fluorescence of the enzyme by cibacron blue indicates a significant alteration in the environment of aromatic amino acid residues due to a stacking interaction and subtle conformatiodnal changes in the enzyme. The concentration-dependent quenching of the intrinsic fluorescence of the enzyme by cibacron blue was employed to determine the binding parameters such as association constant (Ka) and stoichiometry (r) for the enzyme-dye complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号